Abstract

Abstract A simplified general circulation model (GCM), consisting of a complete dynamical core, simple specified physics, and convective momentum transport (CMT) forcing, is used to understand the effects of CMT on climate simulations with a focus on the role of convective heating in the response of circulation to the CMT forcing. It is found that the convective heating dominates the meridional circulation response and dynamical processes dominate the zonal wind response to the CMT forcing in the tropics; the simplified model reproduces some of the key features of CMT-induced circulation changes observed in the full GCM in the tropics. These results suggest that the CMT-induced zonal and meridional circulation changes in the tropics in the full GCM are dominated by dynamical processes and the convective heating, respectively. Inclusion of the CMT in the model induces a marked change in convective heating, which negatively correlates with the change in vertical velocity, indicating the existence of CMT-induced convective heating–circulation feedback. The sensitivity experiment with the removal of mean convective heating feedback demonstrates that the convective heating affects the response of the meridional circulation to the CMT forcing through the CMT-induced convective heating–circulation feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.