Abstract

Developing highly efficient and inexpensive adsorbent is a critical technology for elemental Hg removal from the coal combustion flue gases worldwide. Here, we present a novel approach that a waste by-product of petroleum coke containing organic sulfur enhanced bromine binding during the bromine modification process and the brominated petroleum coke increased its mercury adsorption. Experiments and density functional theory reveal that the mercury adsorption capacity directly correlated with the surface organic sulfur and the binding bromine content. Our direct observations and theoretical modeling demonstrate that HgBr and Hg(Br) Br are the primary chemical forms chemisorbed on the surface of this new carbon-based sorbent, which is approaching to bind on the carbon site next to the S atom. The synergetic effect of the inherent thiophene sulfur and loaded bromine enhanced the Hg removal efficiency of the adsorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.