Abstract

The engineered search for new catalysts requires a deep knowledge about reaction mechanisms. Here, with the support of a combination of computational and experimental results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by adatoms of the p block is elucidated for the first time. DFT calculations reveal that some adatoms, such as Bi and Pb, have positive partial charge when they are adsorbed on the bare surface, whereas others, such as Se and S, remain virtually neutral. When the partial charge is correlated with previously reported experimental results for the formic acid oxidation reaction, it is found that the partial positive charge is directly related to the increase in catalytic activity of the modified surface. Further, it is obtained that such a positive partial charge is directly proportional to the electronegativity difference between the adatom and Pt. Thus, the electronegativity difference can be used as an effective descriptor for the expected electrocatalytic activit...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call