Abstract

The extensive use of graphene oxide (GO) has resulted in its inevitable entry into the environment. It has been established that GO is detrimental to nitrogen accumulation in plants, as nitrogen is one of the most important nutrient for plant growth. However, its influence on nitrogen assimilation has not yet been investigated comprehensively. Based on the analysis of transcriptomics and nitrogen metabolites, this study showed that 400 mg L−1 GO exposure downregulated most of the genes encoding nitrogen-assimilating enzymes, including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). The activities of the above enzymes in wheat roots were also reduced with GO addition, and the activities of NR and GS, the rate-limiting enzymes of nitrate and ammonium assimilation, were approximately 75% and 76% lower with 400 mg L−1 GO supply, respectively, compared to those upon control treatment. Correspondingly, GO appears to exert a negative effect on multiple nitrogen assimilation products, including nitrous nitrogen, ammonium nitrogen, glutamine, glutamate, and soluble protein. In summary, this study showed that GO has adverse effects on the nitrogen assimilation of plants, and NR and GS are the most affected sites. Our findings would provide deeper insights into the physiological and molecular mechanisms underlying GO phytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.