Abstract

Tin (Sn) is an emerging anode candidate for Li-ion batteries. Due to its high availability and low cost, researchers are studying Sn anode as a next-generation anode alternative for Li-ion batteries (LIB). In this study, we have investigated the electroplated Sn anode obtained from the aqueous media. We have utilized the electrodeposition method for synthesizing pure tin anode on the copper current collector. Aqueous media comprised of tin salt, surface activator, adhesive agent, buffering, and the complexing agent was utilized for obtaining pure tin without using any binder and a conductive agent. Deposition potentials and their effect on the particle morphology and crystal structure were investigated. To enhance the electrochemical performance, we coated the tin anode with the conducting polymer coating and further analyzed the effect of the heat treatment on the polymer-coated tin anodes. The electrochemical performance and physicochemical properties of the electrodeposited Sn electrode were characterized by, Scanning electron microscopy, X-ray Diffraction, and electrochemical techniques. As the voltage of the coating potential increases, it has been observed that the tin particles further enlarge. No difference is observed in X-ray diffraction results for the tin electrodes obtained at different voltages. Coating voltage values of -0.8V and -0.9V have provided ideal electrochemical results. Although polymer coating has a positive effect on the initial capacity value, it has been observed that it does not have sufficient improvement in cycle life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call