Abstract

Co/γ-Al(2)O(3) catalysts with particle sizes in the range of 4-15 nm were investigated by isothermal hydrogenation (IH), temperature programmed hydrogenation (TPH), and steady-state isotopic transient kinetic analysis (SSITKA). Kinetic isotope effect experiments were used to probe possible mechanisms on Co/γ-Al(2)O(3) with different particle size. It was found that CO dissociated on Co/γ-Al(2)O(3) catalysts at 210 °C. The total amount of CO(2) formed following the dissociation depends on the cobalt crystal size. O-Co binding energy was found to be highly dependent on the Co metal particle size, whereas similar C-Co binding energy was found on catalysts with different Co particle size. Very strongly bonded carbon and oxygen surface species increased with decreasing particle size and acted as site blocking species in the methanation reaction. SSITKA experiments showed that the intrinsic activity (1/τ(CH(x))) remained constant as the particle size increased from 4 to 15 nm. The number of surface intermediates (N(CH(x))) increased with increasing particle size. The apparent activation energies were found similar for these catalysts, about 85 kJ/mol. D(2)-H(2) switches further confirmed that the particle size did not change the kinetically relevant steps in the reaction. The reactivity of the active sites on the 4 nm particles was the same as those on the 8, 11, and 15 nm particles, and only the number of total available surface active sites was less on the 4 nm particles than on the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.