Abstract

Little is known on the early stages of the methanol-to-olefin (MTO) conversion over H-SAPO-34, before the steady-state with highly active polymethylbenzenium cations as most important intermediates is reached. In this work, the formation and evolution of carbenium ions during the early stages of the MTO conversion on a H-SAPO-34 model catalyst were clarified via 1H MAS NMR and 13C MAS NMR. Several initial species (i.e., three-ring compounds, dienes, polymethylcyclopentenyl, and polymethylcyclohexenyl cations) were, for the first time, directly verified during the MTO conversion. Their detailed evolution network was established from theoretical calculations. On the basis of these results, an olefin-based catalytic cycle is proposed to be the primary reaction pathway during the early stages of the MTO reaction over H-SAPO-34. After that, an aromatic-based cycle may be involved in the MTO conversion for long times on stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.