Abstract

The three binary mixtures cyclohexane + benzene, cyclohexanol + phenol, and cyclohexylamine + aniline exhibit qualitatively different vapor-liquid phase behavior, that is, azeotropic with a pressure maximum, azeotropic with a pressure minimum, and zeotropic, respectively. Employing molecular modeling and simulation, the COSMO-SAC model, and a cubic equation of state, the root of these effects is studied on the basis of phase equilibria, excess properties for volume, enthalpy, and Gibbs energy as well as microscopic structure. It is found that cyclohexane + benzene is characterized by more pronounced repulsive interactions, leading to pressure maximum azeotropy and a positive excess Gibbs energy. Functionalizing the aliphatic and aromatic rings with one amine group each introduces attractive hydrogen bonding interactions of moderate strength that counterbalance such that the mixture becomes zeotropic. The hydroxyl groups introduce strong hydrogen bonding interactions, leading to pressure minimum azeotropy and a negative excess Gibbs energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.