Abstract

The desensitizing mechanism of amorphous olefin in a typical explosive HMX against external mechanical stimuli was investigated by loading uniaxial compression and shear on four cells composed of pure HMX, pure olefin, HMX + 3 wt % olefin, and HMX + 9 wt % olefin, respectively. As a result, it was confirmed that the mechanism under the loading conditions is predominantly attributed to the good lubricating property of olefin, which can greatly reduce shear stress denoted by shear sliding barriers. At the same time, the addition of a little olefin in HMX, for example, below 10 wt %, cannot obviously improve the compressibility of HMX-based explosives. It therefore indicates the lowered mechanical sensitivity is not caused by improving compressibility. In addition, my simulations did not show that the more olefin added in HMX results in the more evident desensitizing effect, suggesting a critical point of the component of HMX + olefin corresponding to a lowest shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.