Abstract
We use the combination of high-resolution electron microscopy and density-functional theory to study the atomic structure and electronic effects of structural defects, such as lamellar twins, stacking faults, and double-positioning twin boundaries in polycrystalline photovoltaic materials such as Si, CdTe, and CuInSe 2. We find that individual lamellar twins and stacking faults do not create deep levels in all these materials. However, areas with high density of these defects can form buried wurtzite layers that introduce a barrier to the majority carriers. Double-positioning twin boundaries, which contain dislocation cores, create deep levels in Si and CdTe. Surprisingly, however, they do not create deep levels in CuInSe 2. These results may explain the fact that Si and CdTe solar cells usually require special passivation, whereas CuInSe 2 solar cells do not. Our further study on the passivation effects indicates that grain boundaries in Si cannot be passivated completely by H alone. On the other hand, grain boundaries in CdTe can be passivated well by Cl and I.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.