Abstract
Purpose. To evaluate correlation between tomographic gradation of keratoconus (KC) and its corresponding air-puff induced biomechanical response. Methods. Corneal tomography and biomechanics were measured with Scheimpflug imaging in 44 normal and 92 KC corneas. Deformation waveform was also analyzed with Fourier series. A custom KC severity scale was used from 1 to 3 with 3 as the most severe grade. Tomographic and biomechanical variables were assessed among the grades. Sensitivity and specificity of the variables were assessed using receiver operating characteristics (ROC). Results. Curvature variables were significantly different between normal and disease (P < 0.05) and among grades (P < 0.05). Biomechanical variables were significantly different between normal and disease (P<0.05) but similar among grades 1 and 2 (P > 0.05). All variables had an area under the ROC curve greater than 0.5. The root mean square of the Fourier cosine coefficients had the best ROC (0.92, cut-off: 0.027, sensitivity: 83%, specificity: 88.6%). Spearman correlation coefficient was significant between most variables (P < 0.05). However, tomographic segregation of keratoconus did not result in concomitant biomechanical segregation of the grades. Conclusions. There was lack of significant biomechanical difference between mild disease grades, despite progressive corneal thinning. Mathematical models that estimate corneal modulus from air-puff deformation may be more useful.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.