Abstract

Here, we investigated the structural, mechanical, electronic, magnetic, thermodynamic and thermoelectric properties of Strontium based simple perovskites SrMO3 (M = Pa, Np, Cm, Bk) by using density functional theory. First and foremost, the ground state stability of these perovskites was initially evaluated by optimizing their total ground state energies in distinct ferromagnetic and non-magnetic configurations. The structural stability in terms of their ground state energies defines that these alloys stabilize in ferromagnetic rather than competing non-magnetic phase. From the understandings of mechanical parameters these alloys are characterized to be ductile in nature. After that, two approximation schemes namely Generalized Gradient approximation and Tran-Blaha modified Becke-Johnson potential have been used to find their intimate electronic structures which displays the half-metallic nature of these alloys. Further, we have verified temperature and pressure effect on these alloys. Finally, the transport properties have been evaluated within the selected temperature range of 150–900 K. In view of this, the different transport parameters along with half-metallic nature advocate their possible applications in thermoelectric and spintronics devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.