Abstract
The contents of alkali and alkaline earth metals are higher in Zhundong coal, and there are serious problems of slagging and fouling during the combustion process. Therefore, it is of great significance to reveal the mechanism of slagging and fouling in the boiler of Zhundong coal. In this paper, first-principle calculations based on density functional theory are used to study the competition mechanism of alkaline metal oxides during the combustion process in Zhundong coal by establishing the Na2O(110)/CaO(100)-SiO2(100) double-layer interface model. The results show that the bond lengths of the surface of Na2O(110) and CaO(100) with SiO2(100) after adsorption were generally lengthened and the value of bond population became smaller, which formed a stable binding energy during the reaction. The electron loss of Na is 0.05 e, the electron loss of Ca is 0.03 e, and the electron loss of Na2O is greater than that of CaO. The charge transfer on the surface of Na2O with SiO2 is obviously higher than that of CaO and the orbital hybridization on the surface of CaO with SiO2 is weaker than that on the surfaces of Na2O with SiO2. Na2O is easier to react with SiO2 than CaO. The adsorption energies on the surface of Na2O and CaO with SiO2 are −5.56 eV and −0.72 eV, respectively. The adsorption energy of Na2O is higher than that of CaO, indicating that Na2O is more prone to adsorption reactions and formation of Na-containing minerals and other minerals, resulting in more serious slagging. In addition, the XRD analyses at different temperatures showed that Na-containing compounds appeared before Ca-containing ones, and the reaction activity of Na2O is stronger than that of CaO in the reaction process. The experimental results have good agreement with the calculation results. This provides strong evidence to reveal the slagging and fouling of Zhundong coal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.