Abstract

The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO∥Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass los...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.