Abstract

AbstractThe Mg2SiSnx solid solution is one of the most representative examples of band engineering, in which the thermoelectric performance is significantly improved by the conduction band convergence. The mechanism behind it is simply explained by the chemical differences between Si and Sn. Here a systematically theoretical study is reported based on Wannier function analysis. It is revealed that the band convergence in Mg2SiSnx is actually driven by the variation of lattice constant, since the heavy and light conduction valleys have different dependence on the bonding length. Alternatively, the band engineering can also be achieved by introducing cation dopants to tune the relative strength of the two chemical bonds directly. In MgSrxSi, a similar band convergence to Mg2SiSnx is predicted by the band structure calculations. This work provides an insightful understanding of the band convergence in Mg2Si‐based materials, and it enables a more efficient and plentiful design for experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.