Abstract

Herein, excitation wavelength-independent, tunable emissive and amphiphilic CDs with high quantum yield were synthesized by a low-temperature oxidation method employing banana peel waste as a carbon source. These CDs showed longer wavelength emissions (green to yellow) independent of the excitation wavelength when dispersed in different polar to non-polar solvents. The quantum yields of the same CDs were 9–32% in different solvent polarities for different emissions. On the other hand, a large stokes-shifted emission (∼9606 cm−1) was observed for CDs in the non-polar and weak polar solvents. The particle size of CDs increases from a hydrophobic to a hydrophilic environment with the change in emission colour from yellow to green. A polar and a non-polar host matrix were used to overcome the limitation of aggregation-caused quenching of CDs in the solid state to obtain bright emissions. These CDs were potentially used for naked-eye detection of trifluoroacetic acid (TFA) by changing the emission colour from yellow to orange under UV 365 nm. Sensing of TFA was also shown reversibly switch emission colour and average lifetime for multiple cycles. Additionally, the highly emissive CDs show negligible cytotoxicity in 3T3 fibroblast cells, indicating possible bioimaging applications in 3T3 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call