Abstract

The d-band center and charge states are often used to analyze the catalytic activity of noble or transition metal surfaces and clusters, but their applicability for single-atom catalysts (SACs) is unsure. This work suggests that the spatial structure and orientation of frontier orbitals which are closest to the Fermi level of SACs play a vital role. Taking adsorption of several molecules and CO oxidization on C_{3}N-supported single-atom Au as examples, we demonstrate that adsorption and catalytic activities are well correlated with the characteristics of frontier orbitals. This work provides an effective guidance for understanding the performance of single-atom catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.