Abstract
Indices of financial returns typically display sample kurtosis that declines towards the Gaussian value 3 as the sampling interval increases. This paper uses stochastic unit root (STUR) and continuous time analysis to explain the phenomenon. Limit theory for the sample kurtosis reveals that STUR specifications provide two sources of excess kurtosis, both of which decline with the sampling interval. Limiting kurtosis is shown to be random and is a functional of the limiting price process. Using a continuous time version of the model under no-drift, local drift, and drift inclusions, we suggest a new continuous time kurtosis measure for financial returns that assists in reconciling these models with the empirical kurtosis characteristics of returns. Simulations are reported and applications to several financial indices demonstrate the usefulness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.