Abstract

Herein, a porous Zn1-xCdxSe structure was developed on TiO2 nanorod (NR) array for photoelectrochemical (PEC) application. Firstly, TiO2 NR and ZnO/TiO2 NR photoanode were synthesized via a series of hydrothermal methods on FTO. Next, the solvothermal synthesis method was adopted to develop inorganic–organic hybrid ZnSe(en)0.5 on ZnO /TiO2 NR-based electrode using different concentrations of the selenium (Se). We found that the ZnO NR acts as a mother material for the formation of inorganic–organic hybrid ZnSe(en)0.5, whereas TiO2 NR acts as a building block. In order to further improve the PEC charge transfer performance, inorganic–organic hybrid ZnSe(en)0.5/TiO2 NR electrode was transferred into a porous Zn1-xCdxSe/TiO2 NR photoanode using the Cd2+ ion-exchange method. The optimized porous Zn1-xCdxSe/TiO2 NR -(2) photoanode converted from ZnSe(en)0.5 -(2) electrode (optimized Se concentration) showed a higher photocurrent density of 6.6 mA·cm−2 at applied potential 0 V vs. Ag/AgCl. The enhanced photocurrent density was owing to the effective light absorption, enhanced charge separation, delay the charge recombination, and porous structure of Zn1-xCdxSe. This work highlights the promising strategy for the synthesis of porous Zn1-xCdxSe/TiO2 NR from inorganic-organic ZnSe(en)0.5/TiO2 NR for effective charge separation and prolonging the lifetime during the photoelectrochemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.