Abstract

Understanding reaction pathways and mechanisms for electrocatalytic transformation of small molecules (e.g., H2O, CO2, and N2) to value-added chemicals is critical to enabling the rational design of high-performing catalytic systems. Tafel analysis is widely used to gain mechanistic insights, and in some cases, has been used to determine the reaction mechanism. In this Perspective, we discuss the mechanistic insights that can be gained from Tafel analysis and its limitations using the simplest two-electron CO2 reduction reaction to CO on Au and Ag surfaces as an example. By comparing and analyzing existing as well as additional kinetic data, we show that the Tafel slopes obtained on Au and Ag surfaces in the kinetically controlled region (low overpotential) are consistently ∼59 mV dec–1, regardless of whether catalysts are polycrystalline or nanostructured in nature, suggesting that the initial electron transfer (CO2 + e– → CO2–) is unlikely to be the rate-limiting step. In addition, we demonstrate how in...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call