Abstract

Steady state, time-resolved fluorescence and NMR experiments are carried out to gain deeper insights into the structure-property correlation in structurally similar monocationic and dicationic room-temperature ionic liquids (RTILs). The excitation wavelength dependent fluorescence response of fluorophore in 1-methy-3-propyllimidazolium bis(trifluoromethylsulfonyl)amide [C3MIm][NTf2] is found to be different from that of 1,6-bis(3-methylimidazolium-1-yl)hexane bis(trifluoromethylsulfonyl)amide [C6(MIm)2][NTf2]2 and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [C6MIm][NTf2]. The outcomes of the present solvent dynamics study in [C3MIm][NTf2] when compared with those in [C6(MIm)2][NTf2]2 and in [C6MIm][NTf2] from our previous studies (Phys. Chem. Chem. Phys. 2014, 16, 12918-12928) indicate the involvement of dipolar rotation of imidazolium cation during solvation. To correlate the findings of solvation dynamics study with the dipolar rotation of the imidazolium ring, pulsed-field gradient (PFG)-NMR technique for translational diffusion coefficient measurement and (1)H as well as (19)F spin-lattice relaxation measurements are employed. NMR investigation reveals that an ultrafast component of solvation can be related to the dipolar rotation of imidazolium cation; hence, the role of dipolar rotation of cations in governing the dynamics of solvation in ILs cannot be ignored. Analysis of the rotational relaxation dynamics data by the Stokes-Einstein-Debye hydrodynamic theory unveils distinctive features of solute-solvent interaction in [C3MIm][NTf2] and [C6(MIm)2][NTf2]2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.