Abstract

In this study, we systematically explore the connection between electrical conductivity and catalytic activity of OER catalysts and disclose the association between the structure of non-oxide-based catalysts and the corresponding OER activity, using a category of Ni-based materials as a model system: i.e., the serial Ni-based compounds NiO, NiSe, Ni3Se2, and Ni with a wide range of continuously adjustable band gaps ranging from insulator to metallic state. X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) revealed that structural rearrangement occurs (forming electrocatalytic active species) on the surface of these catalysts during electrochemical water oxidation. Extended X-ray absorption fine structure (EXAFS) curve fitting suggested the trend of surface oxidation facility for these investigated catalysts. Benefiting from the synergetic effect of intrinsic metallic state and more facile surface reorganization enabled by anions incorporated in a metal mat...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call