Abstract

The locations of functionally important sequences and general structural motifs have been assigned to Ile-tRNA synthetase. However, a function has not been established for some segments of the protein (e.g., CP1). The method of structural modeling described here cannot establish the details of a 3 A crystal structure, and, in contrast to a crystal structure, the precision of the model varies according to the extent of a sequence similarity or the functional importance of a region. In Ile-tRNA synthetase, the signature sequence and the flanking regions are likely to be similar in structure to the proteins on which the model is based. For other regions, it may be possible to build a three-dimensional model by connecting well defined regions and refining the positions of the connecting elements by energy minimization. Structural modelling of this kind must be done cautiously, because the order and orientation of the elements of a structural motif can change in subtle ways. In the case of Tyr-tRNA synthetase, the beta-strand nearest the N-terminus is the outermost strand of the nucleotide binding fold; in Met-tRNA synthetase, the same strand is innermost. Furthermore, the orientation of this strand may be antiparallel (Tyr-tRNA synthetase) or parallel (Met-tRNA synthetase). Because multiple structures that differ in their orientations of structural elements are possible, the structural analogies between proteins should not be naively extrapolated without independent experimental support. As described above, some regions of proteins tolerate internal deletions and insertions. This provides further experimental support for the practice of allowing for gaps in computer-generated sequence alignments. Nevertheless, because some regions are more tolerant of insertions and deletions than others, the structural and functional significance of a region of broken alignment must be assessed carefully. All gaps in sequence alignments cannot be treated equally, and each must be evaluated within its own context. In the synthetases of known structure, structural analogy can be used to identify important functional elements. For example, the amino acid binding site of Met-tRNA synthetase might be formed, at least in part, by a peptide that encompasses Ala50; this amino acid aligns with Gly94 of the Ile-tRNA synthetase. This is an example in which results on a protein of unknown structure (Ile-tRNA synthetases) can lead to identification of a potential substrate binding site in a protein of known structure (Met-tRNA synthetase).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call