Abstract

Starches extracted from parboiled rice flour and pasta samples produced by two extrusion processes – a conventional method carried out at 50 °C and an extrusion-cooking process at 115 °C – were evaluated by differential scanning calorimetry (DSC) and size exclusion chromatography (SEC) analysis. Molecular changes induced by both pasta-making process and following cooking in boiling water were also investigated using iodine absorption properties of samples expressed as the ratio of absorption to scattering spectra (K/S) and X-ray diffraction. A decrease in polymer chain mobility and iodine binding capacity were observed after pasta-making process. While the characteristic A-type crystalline pattern remained, the exposure to iodine vapor changed the peak intensity of starch samples, especially at 0.97 a w. The higher melting temperature of pasta samples in comparison with parboiled rice flour reflected the decrease in mobility of the amorphous regions detected by K/S spectral analysis. The pasta making-process also affected the molecular size distribution of starch samples. In particular, the elution peak shifted toward lower fraction numbers with increasing extrusion temperature, showing a higher molecular size for starch after the extrusion-cooking. All the differences detected between starch samples according to extrusion conditions were deleted during cooking. Compared to the uncooked samples, starch from cooked pasta showed higher K/S value at all wavelengths, highlighting the increase in mobility of the amorphous region. Moreover, beside the increase in melting temperature, a decrease in endothermic enthalpy was detected, confirming the loss of order observed by X-ray diffraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call