Abstract

Star-fundamental algebras are special finite dimensional algebras with involution ∗ * over an algebraically closed field of characteristic zero defined in terms of multialternating ∗ * -polynomials. We prove that the upper-block matrix algebras with involution introduced in Di Vincenzo and La Scala [J. Algebra 317 (2007), pp. 642–657] are star-fundamental. Moreover, any finite dimensional algebra with involution contains a subalgebra mapping homomorphically onto one of such algebras. We also give a characterization of star-fundamental algebras through the representation theory of the symmetric group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.