Abstract

AbstractControlled‐release fertilizers (CRFs) have the potential to deliver crop production and environmental benefits through better control of applied nitrogen (N) in cropping systems. Whereas N release from CRFs can be impacted by several factors, there has been a widely held view that soil water has little effect on N release from polymer‐coated CRFs. Past research has often studied the soil water effect as a function of soil water content. This limits the transferability of results. In this study we measured N release from a polymer‐coated urea (PCU) and a polymer‐sulfur–coated urea (PSCU) using undisturbed soil cores at set matric potentials. Soil matric potential had a significant effect on N release from PCU. Release at −1,000 kPa was delayed by up to 30 d compared with −10 kPa. Optical stereo microscopy clarified that this was linked to differences in the rate of water absorption. Theoretical considerations demonstrate that these relatively large differences could not be explained by the effect of soil matric potential on vapor flow. It is possible that soil matric potential interacted with the properties of the coating to change its permeability or the involvement of liquid flow. The effect of soil water on N release from PSCU was less clear. The magnitude of the soil water effect is, therefore, product‐specific and dependent on coating properties. The soil matric potential provided a consistent description of release patterns between soils with contrasting soil water retention characteristics. Soil water effects should hence be studied as a function of soil matric potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.