Abstract

Slow feature analysis is an algorithm for unsupervised learning of invariant representations from data with temporal correlations. Here, we present a mathematical analysis of slow feature analysis for the case where the input-output functions are not restricted in complexity. We show that the optimal functions obey a partial dierential eigenvalue problem of a type that is common in theoretical physics. This analogy allows the transfer of mathematical techniques and intuitions from physics to concrete applications of slow feature analysis, thereby providing the means for analytical predictions and a better understanding of simulation results. We put particular emphasis on the situation where the input data are generated from a set of statistically independent sources. The dependence of the optimal functions on the sources is calculated analytically for the cases where the sources have Gaussian or uniform distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.