Abstract

Rod-coil diblock copolymers are a special kind of molecule containing a rigid rod and a flexible part. We present a systematic study on self-assembly of the rod-coil copolymers in nanoslits using a hybrid density functional theory. The self-assembly of the rod-coil molecule is driven by the bulk concentration, and there exists a critical bulk concentration beyond which the rod-coil molecule self-assembled into ordered lamellar structures in the slit, otherwise it is in a disordered state. By monitoring the effect of the interaction (epsilon(TT)(*)) of molecular tail on the self-assembly, we found that in the nanoslit of H=13sigma, it is at epsilon(TT)(*)=8 rather than epsilon(TT)(*)=10 or epsilon(TT)(*)=12 that the minimal critical bulk concentration occurs. It may be because the strong tail-tail interaction leads to aggregation of the copolymer molecules in bulk phase, and the resulting supramolecular structures are fairly difficult to enter the slit due to the depletion effect. At a fixed slit, the structural evolution of the self-assembled film with the bulk concentration is observed, including trilayer and five-layer lamellar structures, smectic-A, smectic-C, and a mixture of smectic-A and smectic-C liquid crystal phases and so on. We found that the critical bulk concentration, corresponding to the disordered-ordered phase transition, greatly depends on the separation between two walls, and it changes periodically with the increase of the slit width. In addition, it is also found that the molecular flexibility is one of key factors determining the self-assembled structure in the slit, and the critical bulk density increases with the molecular flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call