Abstract

The development of membranes capable of precise solute-solute separation is still in its burgeoning stage without a standardized protocol for evaluating selectivity. Three types of membrane processes with different driving forces, including pressure-driven filtration, concentration difference-driven diffusion, and electric field-driven ion migration, have been applied in this study to characterize solute-solute selectivity of a commercial nanofiltration membrane. Our results demonstrated that selectivity values measured using different methods, or even different conditions with the same method, are generally not comparable. The cross-method incomparability is true for both apparent selectivity, defined as the ratio between concentration-normalized fluxes, and the more intrinsic selectivity, defined as the ratio between the permeabilities of solutes through the active separation layer. The difference in selectivity measured using different methods possibly stems from the fundamental differences in the driving force of ion transport, the effect of water transport, and the interaction between cations and anions. We further demonstrated the difference in selectivity measured using feed solutions containing single-salt species and that containing mixed salts. A consistent protocol with standardized testing conditions to facilitate fair performance comparison between studies is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call