Abstract

The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE). It considers the city (i.e., Wellington) as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical) and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption), environmental effects (carbon emissions, influences on local natural and ecological systems) and potential natural disasters (e.g., inundation due to sea level rise and storm events) faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

Highlights

  • Today, more than 95% of the world‘s population lives in less than 10% of the Earth‘s land area, mainly in cities and towns

  • How to build a resilient city in order to respond to climate change and other possible disasters, such as earthquakes and tsunamis, is of major interest to planners, politicians and the public

  • The approaches range from operations research (OR) to system dynamics (SD) and discrete-event or discrete-agent system simulation approaches (DS)

Read more

Summary

Introduction

More than 95% of the world‘s population lives in less than 10% of the Earth‘s land area, mainly in cities and towns. The most important influences of urbanization on the environment are energy use and the related increase in the emission of greenhouse gases, due to changes in land use and urban human activities [2,3]. Cities have become significant players in regard to policies, which are attempting to respond to peak oil and climate change These policies have been focused on building resilient cities, which aim to enhance a city‘s ability to respond to a natural resource shortage and the recognition of the human impact on climate change [4]. Resilient cities are believed to adapt better to change through adjusting inner systems, for example, by changing their transport-land use system to reduce energy consumption and exposure of the system to potential natural disasters (e.g., sea-level rise). A resilient city reduces its ecological footprint (e.g., energy consumption), while simultaneously improving its quality of life

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.