Abstract

Summary EnCana Corporation's Christina Lake Thermal Pilot Project located 170 km south of Fort McMurray, Alberta, Canada, uses steam-assisted gravity drainage (SAGD) technology to recover bitumen from the Lower Cretaceous McMurray formation. This paper presents an analysis of time-lapse and crosswell seismic data, as part of an overall study integrating different disciplines and technologies, to understand the effects of geology on SAGD-process performance in the pilot area. A 3D baseline survey was conducted at the start of the pilot in 2001, and two follow up surveys were conducted in 2004 and 2005. In addition, six crosswell seismic profiles were acquired by placing both sources and receivers in the vertical wellbores. The goal of the seismic surveys was to better understand steam-chamber growth and reservoir architecture by detecting lithology changes, including the occurrence and distribution of mudstone stringers. Data from the surveys, especially from the crosswell profiles, indicated significant reservoir heterogeneity, and helped to characterize reservoir architecture in the pilot area more accurately. Analysis of seismic data (both 4D and crosswell) showed steam-chamber growth and oil recovery to be influenced strongly by reservoir geology. Steam-chamber growth is especially affected by the presence of low-permeability facies in the vicinity of the SAGD well pairs. Our analysis indicates that these reservoir heterogeneities have contributed to the creation of areas within the reservoir that have been unaffected by steaming operations to date. These findings are in agreement with flow-simulation results and collectively contribute significantly to the planning of future developments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call