Abstract
PurposeExtracting information from unstructured data becomes a challenging task for computational linguistics. Public figure’s statement attributed by journalists in a story is one type of information that can be processed into structured data. Therefore, having the knowledge base about this data will be very beneficial for further use, such as for opinion mining, claim detection and fact-checking. This study aims to understand statement extraction tasks and the models that have already been applied to formulate a framework for further study.Design/methodology/approachThis paper presents a literature review from selected previous research that specifically addresses the topics of quotation extraction and quotation attribution. Research works that discuss corpus development related to quotation extraction and quotation attribution are also considered. The findings of the review will be used as a basis for proposing a framework to direct further research.FindingsThere are three findings in this study. Firstly, the extraction process still consists of two main tasks, namely, the extraction of quotations and the attribution of quotations. Secondly, most extraction algorithms rely on a rule-based algorithm or traditional machine learning. And last, the availability of corpus, which is limited in quantity and depth. Based on these findings, a statement extraction framework for Indonesian language corpus and model development is proposed.Originality/valueThe paper serves as a guideline to formulate a framework for statement extraction based on the findings from the literature study. The proposed framework includes a corpus development in the Indonesian language and a model for public figure statement extraction. Furthermore, this study could be used as a reference to produce a similar framework for other languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.