Abstract

We study classical and quantum scattering properties of particles in the ballistic regime in two-dimensional chaotic billiards that are models of electron- or micro-waveguides. To this end we construct the purely classical counterparts of the scattering probability (SP) matrix |S(n,m)|(2) and Husimi distributions specializing to the case of mixed chaotic motion (incomplete horseshoe). Comparison between classical and quantum quantities allows us to discover the purely classical dynamical origin of certain general as well as particular features that appear in the quantum description of the system. On the other hand, at certain values of energy the tunneling of the wave function into classically forbidden regions produces striking differences between the classical and quantum quantities. A potential application of this phenomenon in the field of microlasers is discussed briefly. We also see the manifestation of whispering gallery orbits as a self-similar structure in the transmission part of the classical SP matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.