Abstract

In plants, vesicle transport occurs in the secretory pathway in the cytosol, between the membranes of different compartments. Several protein components have been identified to be involved in the process and their functions were characterized. Both cargos and other molecules (such as hormones) have been shown to use vesicle transport, although the major constituents of vesicles are lipids which are transferred from donor to acceptor membranes. In humans, malfunction of the cytosolic vesicle transport system leads to different diseases. To better understand and ultimately cure these human diseases, studying other model systems such as yeast can be beneficial. Plants with their cytosolic vesicle transport system could serve as another model system. However, this review focuses on plant vesicles not present in the cytosol but in the chloroplasts, where lipids produced in the surrounding envelope are transported through the aqueous stroma to the thylakoid membranes. Although chloroplast vesicles have found both biochemical and ultrastructural support, only two proteins have been characterized as components of the pathway. However, using bioinformatics a number of other proteins have been suggested as homologs to the cytosolic system. Based on these findings vesicles of chloroplasts are likely most similar to the vesicles trafficking from ER to Golgi, or may even be unique, but important experimental support is yet lacking. In this review, proposed vesicle transport components in chloroplasts are presented, and their possible future implementation for human medicine is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.