Abstract

To date there has been a lack of understanding on how photoexcited electron charge transfer can be beneficially combined in a hybrid photo-thermal-catalytic reaction. The effect of different excitation wavelengths on photo-thermal-catalytic oxidation by Au/TiO2 and TiO2 nanoparticles was studied via the gas-phase oxidation of ethanol over a temperature range of 100–250 °C under either visible light or UV illumination. Catalytic performance was assessed by monitoring the CO2 yield. Despite being a weak thermal catalyst (5% catalytic enhancement in comparison to neat TiO2 under thermal catalytic conditions), Au/TiO2 displayed a considerable photo-thermal synergism in the photo-thermal regime (>175 °C), with over 50% and 100% increases in catalytic performance in comparison to neat TiO2 under visible light and UV illumination, respectively. Photo-thermal-catalytic results and detailed probing of postreaction surface carbon species on Au/TiO2 indicated that photo enhancement under UV illumination was due to c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.