Abstract

Barium strontium titanate BaxSr1-xTiO3 (BSTO) has been widely used in nano devices due to its unique ferroelectric properties and can be epitaxially grown on a SrTiO3 (STO) support, with a reduced lattice and thermal mismatch. In this work, we developed a ReaxFF reactive force field verified against quantum mechanical data to investigate the temperature and composition dependency of BSTO in non-ferroelectric/ferroelectric phases. This potential was also explicitly designed to capture the surface energetics of STO with SrO and TiO2 terminations. Our molecular dynamics simulations indicate that when the percentage of Sr increases, the phase transition temperature and the polarizations of the BaxSr1-xTiO3 system decrease monotonically. In addition, as the oxygen vacancy concentration enhances, the initial polarization and the phase transition temperature of the system drop significantly. Furthermore, our simulation results show that charge screening induced by adsorption of water molecules on TiO2 terminated surfaces leads to an increased initial polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.