Abstract

Organic semiconductor laser diodes (OSLDs) are prevalent in optoelectronics because of their sustainable energy applications. Organic molecules used in such diodes are usually large; hence, their studies are computationally challenging with high-end benchmark methods. Computational methods with reliable accuracy and efficiency are always indispensable. In the present work, we have applied our computationally inexpensive, nonempirically tuned [electron localization function (ELF*) and solvent (Sol*)] range-separated (RS) functionals to study five molecules used in OSLDs. The emission energies in three different environments [toluene, CBP (4,4'-bis(n-carbazolyl)-1,1'-biphenyl) film, and gas] have been computed with the tuned functionals and compared with the experimental emission energies. ELF* and Sol* functionals can accurately reproduce emission energies in toluene and CBP film environments. On the other hand, both ELF* and IP-tuned functionals with excited-state geometry (IP*) perform better in the gas phase. In addition, a comparative study is performed between time-dependent density functional theory and the Tamm-Dancoff approximation. Along with the emission energy, oscillator strength values have also been reported. Different IP-tuned RS parameters were obtained with the ground- and excited-state geometries. Interestingly, it has been observed that the optimally tuned RS parameter with excited-state geometry (IP*) performs better compared to that with ground-state geometries (IP). Fractional occupation calculations show that the tuned functionals exhibit less localization and delocalization error. The study envisages that ELF* and Sol* functionals can be used to design future candidates for OSLDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call