Abstract

No field study has provided a detailed characterization of the molecular composition and spatial distribution of a vadose zone plume of petroleum volatile organic compounds (VOCs), which is critical to improve the current understanding of petroleum VOC transport and fate. This is study reports a high-resolution analysis of two distinct vapor plumes emanating from two different light non-aqueous phase liquid (LNAPL) sources (an aliphatic-rich LNAPL for Zone #1vs an aromatic-rich LNAPL for Zone #2) at a large petrochemical site. Although deep soil vapor signatures were similar to the source zone LNAPL signatures, the composition of the shallow soil vapors reflected preferential attenuation of certain hydrocarbons over others during upward transport in the vadose zone. Between deeper and shallower soil gas samples, attenuation of aromatics was observed under all conditions, but important differences were observed in attenuation to aliphatic compound classes. Attenuation of all aliphatic compounds was observed under aerobic conditions but little attenuation of any aliphatics was observed under anoxic conditions without methane. In contrast, under methanogenic conditions, paraffins attenuated more than isoparaffins and naphthenes. These results suggest that isoparafins and naphthenes may present more of a vapor intrusion risk than benzene or other aromatic hydrocarbons commonly considered to be petroleum vapor intrusion risk drivers. While the overall vapor composition changed significantly within the vadose zone, diagnostic ratios of relatively recalcitrant alkylcyclopentanes were preserved in shallow soil vapor samples. These alkylcyclopentanes may be useful for distinguishing between petroleum vapor intrusion and other sources of petroleum VOCs detected in indoor air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.