Abstract

Source code management systems (such as Concurrent Versions System (CVS), Subversion, and git) record changes to code repositories of open source software projects. This study explores a fuzzy data mining algorithm for time series data to generate the association rules for evaluating the existing trend and regularity in the evolution of open source software project. The idea to choose fuzzy data mining algorithm for time series data is due to the stochastic nature of the open source software development process. Commit activity of an open source project indicates the activeness of its development community. An active development community is a strong contributor to the success of an open source project. Therefore commit activity analysis along with the trend and regularity analysis for commit activity of open source software project acts as an important indicator to the project managers and analyst regarding the evolutionary prospects of the project in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.