Abstract

The complex chemical composition and material interactions of lithium-ion batteries challenge the in-depth understanding of thermal runaway reactions and failure mechanisms. In this study, detailed analysis and implementation have been made from three levels to further explain the thermal failure mechanism, from material interactions to cell-level experiments and applications. The LiFePO4 thermal runaway mechanism is put forward to characterize exothermic peaks from differential analysis of differential scanning calorimetry (DSC) and Accelerating Rate Calorimetry (ARC) data. Furthermore, the development, parameterization, and application of the thermal runaway prediction model are also discussed. Multi-heating rate data is a prerequisite to kinetic analysis and modeling work and provides valuable data set for LiFePO4 thermal failure. And the unraveled mechanism is believed to provide a profound understanding of the thermal failure mechanism, strengthening interactions between material characterization and thermal runaway modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call