Abstract

The application of Cr-free Cu-based catalysts in ester hydrogenolysis is a modern environmentally-friendly research approach. The comprehensive study of four supported Cu-based catalysts was performed using 8 wt% of Cu loaded on Al2O3, ZnO, TiO2 and ZrO2 supports by an impregnation method. Using XRD, H2-TPR, BET, pyridine-TPD, CO2-TPD and N2O-RFC methods, the effect of the support on the formation of Cu-nanoparticles was described. Al2O3 was evaluated as the support ensuring the highest nanoparticles dispersion, while Cu nanoparticles in Cu-TiO2 were liable to sintering. The catalysts were tested in dimethyl adipate hydrogenolysis, where the catalyst performance and activity (TOF) were evaluated and Cu-ZrO2 showed the best results. A correlation between the number of acid-base sites and the catalyst selectivity was revealed and the catalyst effect on the formation of various by-products was described. The intrinsic selectivity to hydrogenolysis products was found to decrease with the increasing acid-base character of the supports whereas the selectivity to transesterification and cyclization products increased. The hydrogenolysis activity was not a simple function of the number of the surface copper atoms, but it was affected by the support nature and its properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.