Abstract

The short-side-chain (SSC) perfluorosulfonic acid (PFSA) membranes are important candidates as membrane electrolytes applied for high temperature or low relative humidity (RH) proton exchange membrane fuel cells. In this paper, the fuel cell performance, proton conductivity, proton mobility, and water vapor absorption of SSC PFSA electrolytes and the reinforced SSC PFSA/PTFE composite membrane are investigated with respect to temperature. The pristine SSC PFSA membrane and reinforced SSC composite membrane show better fuel cell performance and proton conductivity, especially at high temperature and low relative humidity conditions, compared to the long-side-chain (LSC) Nafion membrane. Under the same condition, the proton mobility of SSC PFSA membranes is lower than that of the LSC PFSA membrane. The water vapor uptake values for Nafion 211 membrane, pristine SSC PFSA membrane and SSC PFSA/PTFE composite membrane are 9.62, 11.13, and 11.53 respectively at 40 °C and they increase to 9.89, 12.55 and 13.09 respectively at 120 °C. The high water content of SSC PFSA membrane makes it maintain high performance even at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.