Abstract

The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

Highlights

  • At high temperatures responsible for the reactivation

  • An Si L3,2 x-ray emission spectroscopic (XES) study of S-doped Si samples [up to 0.7 atomic percentage]9 exhibited induced emission feature intensity above the Si valence-band-maximum (EVBM), which scaled linearly with S concentration associated with the S-dopant, and the line-shape of the S-dopant feature changed across the insulator-to-metal transition (IMT)

  • Density Function Theory (DFT) suggested that the chalcogen-induced IMT arises from the merging of dopant states and conduction bands in chalcogens hyperdoped Si4,5,11

Read more

Summary

Results and Discussion

The 500 Torr sample has an average IR absorptance of ~87%, but annealing at 500 °C reduces the average IR absorptance to ~23% and annealing at 700 °C reduce it further to ~7% Both the Si K-edge XANES and EXAFS results showed that the sample annealed at the high temperature of 700 °C and the undoped Si(100) reference have similar near-edge absorption feature and structural ordering, illustrating that the sub-band gap absorption of the S-hyperdoped Si samples is clearly related to their electronic states and atomic structural ordering, which are influenced by the concentration of S-dopant and thermal annealing. Our theoretical calculations based on the DFT method are consistent with experimental results and the IMT of S-doped Si is predicted to occur at an S concentration at a critical value of 0.46% (~2.3 × 1020 cm−3)

Methods
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.