Abstract
This paper deals with the understanding at a first-principles level of the nuclear quadrupole interaction (NQI) parameters of solid chlorine, bromine and iodine as well as the intermolecular binding of these molecules in the solid. The electronic structure investigations that we have carried out to study these properties of the solid halogens are based on the Hartree-Fock Cluster approach using the Roothaan variational procedure with electron correlation effects included using many-body perturbation theory with the empty orbitals used in the perturbation theory investigations for the excited states. The results of our investigations provide good agreement with the measured NQI parameters primarily from the Hartree-Fock one electron wave-functions with many-body effects making minor contributions. The binding (dissociation) energies for the molecules with the solid state environment on the other hand arises from intermolecular many body effects identified as the Van der Waals attraction with one-electron Hartree-Fock contribution being repulsive in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.