Abstract

The nonlinearity of lithium-ion battery voltage response has been recently gained high attention in battery characterization and health diagnosis. The multisine-based nonlinear characterization method has the potential for development as an expedient on-board technique for analyzing nonlinear responses. Despite this, it remains challenging to analyze the effect of aging degradation on LIB nonlinearity. In this study, the odd random-phase multisine method is performed on fresh and aged three-electrode experimental cells. This allowed for the separation of impedance-related linear approximation and odd or even order nonlinearity toward the full-cell voltage into their respective electrodes. The results demonstrate that, as the LIB degrades, the increase of impedance-related linear approximation estimated by the multisine-based method agrees well with the results of conventional EIS. The variation of nonlinearities is demonstrated in relation to the effect of degradation modes. The multisine-based method presents the advantage of simultaneously capturing impedance-related and nonlinearity information. This makes it become a fast diagnostic method that can be implemented in a BMS to quantify the causes of battery degradation, thereby supporting battery utilization optimization and future battery designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call