Abstract
The groundbreaking development of lanthanide-doped core-shell nanostructures have successfully achieved precise optical tuning of rare-earth nanocrystals, leading to significant improvements in energy transfer efficiency and facilitating multifunctional integration. Exploring the atomic-level structural, physical, and optical properties of rare-earth core-shell nanocrystals is essential for advancing our understanding of their fundamental principles and driving the development of emerging applications. However, our knowledge of the atomic-level structural details of rare-earth nanocrystal core-shell structures remains limited. This review provides a comprehensive discussion of synthesis strategies, characterization techniques, interfacial ion-mixing phenomena, strain effects, and spectral modulation in core-shell structures of rare-earth-doped nanocrystals. Additionally, we prospectively discuss the challenges encountered in studying the fine structures of rare-earth-doped core-shell nanocrystals, particularly the increasing demand for researchers to integrate interdisciplinary knowledge and utilize high-end precision instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.