Abstract

Nanostructured thermal barrier coatings (TBCs) often provide high degradation resistance, as well as extended lifetime. However, the underlying mechanism has not been fully understood. In this study, the sintering characteristics of nanostructured yttria-stabilized zirconia (YSZ) coatings were investigated, and compared with those of the conventional YSZ coatings. Multiscale characterizations of the changes in microstructures and properties were performed. Results showed that the enhanced high-performance durability was mainly attributed to different sintering mechanisms of lamellar zones and nanozones. Sintering characteristics of the lamellar zones were similar to those of the conventional coatings. Stage-sensitive healing of two-dimensional (2D) pores dominated the sintering behavior of the lamellar zones. However, the differential densification rates between nanozones and lamellar zones of the nanostructured TBCs led to the formation of coarse voids. This counteractive effect, against healing of 2D pores, was the main factor contributing to the retardation of the performance degradation of bimodal TBCs during thermal exposure. Based on the understanding of the performance-degradation resistance, an outlook towards TBCs with higher performances was presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.