Abstract

The present research realises a controllable optical memory using one dimensional indium phosphate (InP) photonic structures at three optical communication windows (850, 1310 and 1550 nm). The photonic structures comprise 21 layers of InP and air material. The memory applications are realised at both single and dual signals of the communication windows. The physics of the research deals with the materials property including the variation of the refractive indices with respect to the input signal. Similarly, mathematics of the works relies on the analysis of reflectance, transmittance and absorbance phenomena. Further, the light from visible spectrum acts as triggering signal to realise optical memory applications. Finally, it is revealed that InP based photonic structures are suitable for controllable memory applications pertaining to the singlewavelength (850, 1310, 1550 nm) or dual wavelengths (850 and 1310 nm, 1310 and 1550 nm, 1550 and 850 nm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.