Abstract

Octopuses are generally characterised by rapid non-asymptotic growth, with high individual variability. However, in situ octopus growth is not well understood. The lack of an ageing method has resulted in the majority of our understanding of octopus growth coming from laboratory studies. Despite not being applicable to cephalopods, Modal Progression Analysis (MPA) of length–frequency data is the most common method for examining in situ octopus growth. Recently, counting growth increments in beaks and vestigial shells, and quantifying lipofuscin in brain tissue, have all shown promise for the ageing octopus. Octopuses generally demonstrate two-phase growth in the laboratory, with physiological changes possibly associated with the switch between an initial rapid exponential phase and a slower power growth phase. Temperature and food ration and quality are key factors influencing the initial growth phase. Temperature, however, does not appear to affect the second phase in any consistent way, perhaps because maturity stage can influence the growth response. There may be basic differences in the mechanisms of octopus muscle growth compared with that of other cephalopods. Furthermore, higher relative maintenance energy expenditure, along with the low energy content of their prey, may account for the relatively slow growth of deep-sea octopuses compared to littoral species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.