Abstract

Nuclear receptors (NRs) are important targets for therapeutic drugs. NRs regulate transcriptional activities through binding to ligands and interacting with several regulating proteins. Computational methods can provide insights into essential ligand-receptor and protein-protein interactions. These in turn have facilitated the discovery of novel agonists and antagonists with high affinity and specificity as well as have aided in the prediction of toxic side effects of drugs by identifying possible off-target interactions. Here, we review the application of computational methods toward several clinically important NRs (with special emphasis on PXR) and discuss their use for screening and predicting the toxic side effects of xenobiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.